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Knowledge about individual covalent or non-covalent bond strengths is the Holy Grail of many

modern molecular sciences. Recent developments of new descriptors for such interaction strengths

based on potential constants are summarised in this tutorial review. Several publications for and

against the use of compliance matrices (inverse force constants matrix) have appeared in the

literature in the last few years. However the mathematical basis for understanding, and therefore

interpreting, compliance constants is still not well developed. We therefore summarise the

theoretical foundations and point to the advantages and disadvantages of the use of force

constants versus compliance constants for the description of both non-covalent and covalent

interactions.

Introduction

Like other chemical concepts, for example aromaticity or

hybridization, the notion of bond orders and bond strengths

leads to occasionally heated discussions in the literature.1–3

Although many of these concepts often lack a solid physical

grounding, without a characterisation or classification of

different bonding situations, there would be no systematic

classification of the boundless chemical diversity. Further-

more, knowledge of individual covalent or non-covalent bond

strengths is crucial in drug design, molecular recognition4 or

the construction of new catalyst systems.5 Yet the evaluation

of bond strength or bond orders is not at all trivial. For

covalent bonds e.g. the frequently used bond dissociation

enthalpies (BDE) and other indirect methods can be far from

adequate in their description of the intrinsic strength of a

particular bond. The BDE of the carbon–carbon double bond

in substituted olefins varies over 400 kJ mol�1 due to different

stabilities and differences concerning the singlet–triplet gap of

the fragments, though the actual character or strength of the

CQC bond is the same.6

On the other hand, the unique experimental determination

of non-covalent bond strengths is often impossible and only

approximate values are proposed. Though non-covalent

bonds are the key to many phenomena in biochemistry, the

understanding of hydrogen bonds in biological macromole-

cules is still hampered by the fact that their strengths are

usually inferred indirectly. In the case of C–H� � �O hydrogen

bonds, this indirect assessment leads to interaction strengths

that range from ‘‘repulsive’’ through ‘‘negligible’’ in the

adenine–thymine base pair to ‘‘large’’ in supramolecular

complexes.7

To separate real differences from deceptive ones suggested

by different indirect proxy methods, alternative ways to

directly determine covalent or non-covalent bond strengths
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without reference to arbitrary or ill-defined states are therefore

needed. The calculation of compliance constants (elements of

the inverted Hessian matrix) offers such an alternative.

In order to clarify the sometimes vague interpretation2,8 of

compliance constants and force constants this tutorial review

will summarise the main features of, and differences between,

these two intrinsic bond strength descriptors.

Before we go into detail, we would like to point out the

difference between the terms ‘‘bond strength’’ and ‘‘bond

stiffness’’. Both terms characterise two different portions of

the potential energy surface. Bond strength as it is commonly

understood is equivalent to the energy needed for the complete

separation of individual molecular fragments (BDE, see

above). Bond stiffness, on the other hand, usually expressed

as force constants, describes the change in energy for small

displacements from the equilibrium structure, that is the

intrinsic bond strength. In what follows we use the expression

‘‘bond strength’’ in terms of this intrinsic bond property.

Force constants

The potential energy V of any molecule can be expanded

exactly in an infinite Taylor series as

V = V0 + GTZ + 1
2
ZTHZ + ... (1)

where Z is the column vector of a fully determined but

otherwise arbitrary set of displacement coordinates, and G

and H are the corresponding gradient (vector of first deriva-

tives qV/qZi) and Hessian (matrix of second derivatives

qV/qZiqZj), respectively.

Chemists are mainly interested in the stationary points on

the potential energy surface (PES), which are either local

minima or transition states. Since the gradient G at these

points is always zero with respect to all displacement coordi-

nates, the second term in eqn (1) disappears. This assumption

will be made throughout this tutorial review.

In order to describe the relative energy (V0 = 0) of a

molecule the geometry of which is slightly distorted compared

to that for which the Taylor series was expanded, it is usually

sufficient to assume a harmonic potential around the equili-

brium. This justifies the termination of the Taylor series after

the third term, resulting in

V = 1
2
ZTHZ (2)

usually known as the quadratic form or harmonic approxima-

tion. The elements of the Hessian H are referred to as force

constants, or rigid force constants to distinguish them from the

relaxed force constants.9 Up to now the formalism is valid for

any set of coordinates. In the following we discuss the proper-

ties of the Hessian in terms of an internal coordinate system.

Internal coordinates

Internal coordinates like interatomic distances, valence and

dihedral angles are commonly used for the description of

molecular geometries, since they are much more intuitive to

chemists than their Cartesian counterparts. Among them we

have to distinguish between non-redundant and redundant

sets. Redundant internal coordinates are widely used in geo-

metry optimization processes. They are more straightforward

to define than non-redundant sets,10–12 because there is no

need to take into account linear dependences. There are a few

problems arising with force constants in redundant coordi-

nates that we will address later. However, we will begin the

discussion in terms of a non-redundant set first.

Eqn (2) is therefore written explicitly in terms of a non-

redundant set of internal displacement coordinates Q

V = 1
2Q

THqQ (3)

whereHq is the corresponding Hessian in internal coordinates.

As Decius13 pointed out, Hq is in principle determined by the

frequencies of a sufficient set of isotopic molecules, and can be

constructed on that basis for any set of internal coordinates.

Thus it is—at least indirectly—observable. Due to their defini-

tion as second derivatives of energy, rigid force constants

provide a measure of the steepness of the potential well for a

molecule in its equilibrium configuration. Since the second

derivative of the energy with respect to displacements is

equivalent to the first derivative of the force, it describes the

force required to distort a coordinate by a unit amount while

holding all other coordinates fixed in their equilibrium config-

urations.14

H ¼ @2V

@Qi@Qj

� �
0

ð4Þ

Due to this property force constants are frequently used as

bond strength descriptors in the literature. However, there are

several problems associated with their interpretation that we

will now discuss in detail.

A simple example

A simple example should illustrate the meaning of force

constants for the 2-dimensional function f(x,y) = x2 + y2,

which has its global minimum at f(0,0) = 0 (cf. Fig. 1, P1). To

displace the x-coordinate by some amount away from this

minimum a force has to be applied against this very coordi-

nate. As can be seen from Fig. 1, this displacement does not

introduce a force in the y-coordinate, since the distortion takes

place along the minimum path with respect to y. This

Fig. 1 Plot of the two-dimensional function f(x,y) = x2 + y2

(uncoupled). Point 1 (P1) reflects the global minimum, point 2 (P2) a

small displacement of the x-coordinate.
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behaviour is due to the fact that this function does not contain

coupling terms between x and y. Thus q2f/qxqy = 0, resulting

in a Hessian of diagonal form. In such cases f can be regarded

as an energy function of two uncoupled harmonic springs that

can be varied independently of each other. This is an impor-

tant aspect to which we will return.

However, potential functions for molecules contain coupling

terms between various internal coordinates since all atoms

‘‘feel each other’’. Thus, for energy functions f that describe

molecules, in general q2f/qxqy a 0 holds. That means that the

Hessian is a non-diagonal one. A simple function of that type

is f(x,y) = x2 + y2 + xy, which is plotted in Fig. 2. If the

coordinate x is deflected under the restriction that y must not

be altered, there will necessarily be a force induced along y in

addition to the force on x (see Fig. 2, P2). For both functions,

the coupled and the uncoupled, the diagonal force constants

corresponding to the x-coordinate q2f/qx2 = 2 are equal.

From this one could erroneously infer that the force required

to distort this coordinate would be the same for both. That

this is not the case can be seen from the gradients which are qf/
qx = 2x and qf/qy = 2y for the uncoupled function and qf/qx
= 2x+ y and qf/qy= 2y+ x for the coupled function. If one

distorts the x-coordinate in the coupled function by some

amount x, while y = 0 is held at the equilibrium value, the

gradient at the point P2(x,0) along x will be qf/qx = 2x which

is identical to that of the uncoupled function. But, due to the

coupling term, an additional force qf/qx = x will be induced

along y, which is obviously not the case for the uncoupled

function. Therefore in coupled functions the force needed to

distort x under the condition that y must not be altered will be

greater than in uncoupled cases. Note that, as mentioned

above, the diagonal force constants are the same. This clarifies

that diagonal force constants cannot be taken as bond strength

descriptors for molecules since they do not reflect couplings

between coordinates. These couplings are given by the off-

diagonal elements. They have to be taken into account for a

reasonable description of the force needed to distort one

particular coordinate.

Interpretation as Hookean springs

Force constants are often interpreted as the spring constants

of Hookean springs that connect the atoms in a molecule.

Hence the question of why the distortion of one particular

bond can induce a force into another one arises. If no more

springs are used to construct the molecule than are required by

the number of degrees of freedom, and no redundancies are

present, any spring should be distortable without affecting the

others. Since this is obviously not the case for molecules, such

coupled systems cannot be explained by a model of indepen-

dent harmonic springs with fixed Hookean constants. It would

be more appropriate to explain the bonds in such systems with

springs whose constants and equilibrium positions depend on

the geometry of the whole molecule and thus on the other

spring constants, too. The traditional picture of describing

molecules as atoms connected via harmonic springs with fixed

force constants thus has to be rejected in general, despite the

fact that this assumption is frequently made in classical force

field calculations.

Dependence on coordinate selection

The most telling criticism of the use of force constants,

however, is that the magnitude of a force constant depends

on the nature of the internal coordinates used to describe the

molecule. We illustrate this problem for the water molecule,

which can be described in terms of the two O–H bonds and the

H–O–H angle, or the two O–H bonds and the non-bonded

H� � �H distance (cf. Fig. 3), respectively, without referring to

explicit values.3 The stretching of the same coordinate (the

O–H bond rOH1 in our example) by a unit amount in two

different non-redundant sets with the restriction that all other

coordinates must not be altered would lead to two different

geometries. Both geometries reflect two different points on the

same PES. Thus the force constants and the force needed to

distort this very coordinate are different for both sets of

coordinates. In other words, it makes a difference if one

Fig. 2 Plot of the two-dimensional function f(x,y) = x2 + y2 + xy

(with a coupling term). Point 1 (P1) reflects the global minimum, point

2 (P2) a small displacement of the x-coordinate while y is held fixed.

Point 3 (P3) depicts the situation after relaxation with respect to y.

Fig. 3 Stretching of one O–H bond (rOH1) in water by the same

amount under the restriction that the other internal coordinates

remain unaltered. The coordinate system 1 (left side) is comprised of

the two O–H distances rOH1, rOH2 and the H–O–H angle a. The

coordinate system 2 consists of the three distances rOH1, rOH2 and

rHH. Both distortions lead to two different geometries, which means

two different points (energies) on the potential energy surface.
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(1) distorts the O–H bond rOH1, while leaving the other O–H

bond rOH2 and the H–O–H angle aHOH fixed (cf. Fig. 3, left),

or if one

(2) distorts the O–H bond rOH1, while leaving the other O–H

bond rOH2 and the H� � �H distance rHH fixed (cf. Fig. 3, right).

This dependence on coordinate selection is troublesome, as

the putative measure of the O–H bond strength varies drama-

tically. Of course, if one intends to use force constants as bond

strength descriptors, they must have a distinct value. The

energy of a molecule and the strength of a specific bond in it

must not depend on the coordinate system.

Mathematically speaking, the Hessians H1 and H2 for two

different sets of non-redundant coordinates that have n

coordinates in common are related by15

H1 ¼
E I
0 J

� �
H2

E 0
I J

� �
ð5Þ

where E is a n � n unit matrix, I and J are non-zero blocks,

and 0 is a zero block. From eqn (5) it can be seen that the

upper left-hand corners of H1 and H2 are different, and thus

the force constants even for the unaltered coordinates are not

the same. This is the strict proof for the general dependence of

force constants on coordinate systems. Note the positions of

the zero blocks 0. We will need this fact in our later discussion

about compliance matrices.

This dependence would obviously not occur if the coordinates

were uncoupled, that is if H is diagonal. The vibrational modes

are independent of each other only for such normal coordinates.

Thus, the motion could be explained by a classical spring model,

where the diagonal elements of the Hessian are the spring

constants. However, normal coordinates are linear combina-

tions of internal coordinates. Thus, it is hard to imagine what

kind of harmonic spring would describe a normal mode, even if

the modes are observable in principle. Nevertheless, one thing is

certain: by the definition of normal modes these springs do not

correspond to particular primitive internal coordinates.

Since the distortion of a bond in general affects the whole

molecule, forces are induced into all other bonds that would

normally lead to stretching, bending, etc. of those coordinates.

Nevertheless, in the case of rigid force constants these relaxa-

tions are forbidden by definition. The resulting force required

to stretch one particular bond is the sum over all forces,

including the induced ones in the other coordinates.

Thus rigid force constants do not provide an unambiguous

measure of the strength of a specific bond. Their indiscrimi-

nate use as bond strength descriptors (e.g. in empirical force

fields where most of the coupling terms are ignored) may lead

to arbitrary results.

We have mentioned that redundant internal coordinates are

frequently used in geometry optimization processes. In such

coordinate systems, the number of internal coordinates used to

describe the system exceeds the degree of internal freedom. As

we will now show, the interpretation of force constants in such

systems is equally worrisome.

Redundant internal coordinates

As stated above, eqn (2) is valid for any set of coordinates,

therefore the expansion in terms of redundant internal coor-

dinates must also hold true.16 In what follows, all matrices M

that correspond to the redundant set will be printed black-

board bold, while the matrices M that correspond to a non-

redundant subset of the coordinates are printed bold. So let us

consider a redundant set of internal coordinates Q (for

example, but not limited to, a set containing all possible

atom–atom distances), then eqn (2) becomes

V = 1
2
QTHqQ (6)

Since Q denotes a set of redundant internal coordinates,

there necessarily exists a corresponding set of internal coordi-

nates Q from which the redundancies have been removed. The

remaining coordinates are linear combinations of the non-

redundant subset. Thus, a uniquely defined matrix A exists,

which expresses the transformation between both sets13,17

Q = AQ (7)

If we choose the ordering of the coordinates Q such that

those of the subset Q are the first ones, it is clear that A

consists of a unit matrix E plus a matrix R of proper dimen-

sion that expresses the redundancies

A ¼ E
R

� �
ð8Þ

Substitution of eqn (7) into eqn (6) results in

V = 1
2Q

TATHqAQ (9)

and from this, by comparison with eqn (3), it can be seen that

the non-redundant Hessian Hq can be expressed as

Hq = ATHqA (10)

Counterintuitively, in this case the non-redundant Hessian

Hq consists of linear combinations of the redundant one Hq,

and not vice versa. Therefore an infinite number of Hessian

matrices Hq in redundant internal coordinates Q that solve

eqn (10) exists. Nevertheless, an expression for the redundant

Hessian Hq starting from the non-redundant Hessian Hq can

be obtained by

Hq = A�THqA
� (11)

where A� = (ATuA)�1ATu and u is an arbitrary positive

definite matrix of appropriate size.18

Due to the fact that the matrix u is involved in the

transformation, it becomes clear that force constants are more

or less arbitrary in the redundant case. This has been pointed

out earlier by the groups of Overend16,19 and Günthard.20

Therefore force constants evaluated in redundant coordinates

have no physical meaning at all and have to be rejected for the

description of bond strengths. Note, however, that redundant

force constants are frequently used e.g. in force field calcula-

tions.21

Still, it is common practice to choose u = E as the unit

matrix. Assuming this, Hq is indeed well but not uniquely

defined according to

Hq = AT+HqA
+ (12)

with A+ = (ATA)�1AT being the Moore–Penrose inverse22 of

A. In general Hq is not a submatrix of Hq, and therefore the
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corresponding elements in both matrices are different. This has

been pointed out by several authors.16,20,23 However the

redundant Hessian Hq always satisfies eqn (6) and can be

constructed in a unique and straightforward manner. This is a

kind of universal solution, although it has no physical mean-

ing. This means that, even in the case of a well-defined

redundant Hessian, the force constants cannot be regarded

as reliable and unique bond strength descriptors.

This applies to geometry optimizations as well, which are

usually based on an initial Hessian guess, comprised of

empirical force constants.11,24 This method can lead to in-

appropriate starting values, in particular for weak chemical

interactions. A diagonal hydrogen-bond stretch force constant

e.g. may differ by more than one order of magnitude from a

regular chemical bond stretch constant.10

It is likely that such initial guesses are often ill-defined, and

thus prevent fast convergence. Still, this method is usually

faster than the explicit calculation of the initial Hessian.

Cyclobutane

In order to reveal the dependence of force constants on

coordinate systems, we would like to present these findings

in a more common chemical context, namely cyclobutane.

Every chemist is familiar with the concept of ring strain, and

there is no controversy about the fact that the C–C bond in

cyclobutane is weaker (and longer) than in butane itself.25 So

let us see how force constants describe this chemical pheno-

menon.

Fig. 4 shows the submatrix of force constants corresponding

to the four C–C bonds in cyclobutane (left) and the three C–C

bonds in n-butane (right), respectively, computed at the MP2/

aug-cc-pvtz level of theory26,27 for two different choices of

non-redundant coordinates. Looking at the matrix expressed

in Fogarasi et al.’s natural internal coordinates28 (left, upper

matrix)—which means a non-redundant set of primitive

stretchings and symmetry adapted linear combinations for

the bendings and torsions (see ESIw)—everything is in line

with our intuitions. The four bonds in cyclobutane are equiva-

lent in terms of their strength and, what is important as well,

the C–C bonds in cyclobutane (4.173 N cm�1) are described as

being weaker than the C–C bonds in n-butane (4.708 N cm�1

and 4.679 N cm�1; see Fig. 4, right).

Turning to z-matrix-type internal coordinates, where both

the stretchings and the bendings and torsions are expressed as

primitive internals, the following findings are obvious: (1) in

the case of cyclobutane the coupling is pronounced; (2) the

four C–C bonds in cyclobutane are described as being differ-

ent; (3) due to the pronounced coupling the C–C bonds in

cyclobutane have a higher force constant and are therefore

erroneously described as being stronger than the C–C bonds in

butane.y Nevertheless, as stated above, the C–C bond in

cyclobutane is in fact weaker than in butane, which of course

should be mirrored by any appropriate bond strength descrip-

tor. As noted several times in this tutorial review, in spite of

these ambiguities, force constants are often used as bond

strength descriptors throughout the literature.

We would therefore like to revive the quite useful and very

straightforward concept of using compliance constants to

assign individual bond strength in arbitrary molecules. It does

not suffer from these shortcomings, but has—apart from a few

exceptions9,29,30—not become generally accepted.

Compliance constants

Decius31 pointed out that the potential energy of a molecule

cannot just be written as a quadratic form in internal displace-

ment coordinates as shown in eqn (3), but also as a quadratic

form in terms of generalized displacement forces (negative

gradient) Gq

V = 1
2
Gq

TCGq (13)

The gradient Gq is the vector of first derivatives of the

potential energy with respect to the displacement coordinates

Q and can be obtained by differentiation of eqn (3)

Gq = HqQ (14)

Substitution of this expression into eqn (13) results in

V = 1
2Q

THq
TCHqQ (15)

Since the Hessian Hq is positive definite, there is only one

solution for C that fulfils eqn (3)

C = Hq
�1 (16)

Eqn (15) is an alternative formulation of the potential energy,

although matrix inversion in general is a computationally

demanding problem and one makes every effort to avoid this

task. However, in this section we wish to point out some

significant advantages of this expression compared to the

conventional expansion into displacement coordinates.

Independence of coordinate selection

As mentioned above, the main problem associated with the

interpretation of force constants is their strong dependence on

the definition of the coordinates. Cyvin and Slater first noted,

however,32 that the elements ofHq
�1 are invariant with respect

to changes in the coordinate system. This invariance was later

proven by Decius13 and it was he who coined the phrase

‘‘compliance matrix’’ for Hq
�1 to emphasize this special

property.

For two sets of coordinates that have n coordinates in

common, the transformation law for two compliance

matrices is15

C1 ¼
E 0
K L

� �
C2

E K
0 L

� �
ð17Þ

where E is a n � n unit matrix, K and L are non-zero blocks

and 0 is a zero block. Note that due to the positions of the zero

blocks 0 in eqn (17), and in contrast to the transformation of

the Hessians (cf. eqn (5)), the upper left-hand blocks of C1 and

C2 are identical. Thus the elements Ci,i, termed compliance

constants (diagonal elements), and compliance coupling

constants Ci,j (off-diagonal elements), for corresponding

y Using a simple ball and stick model, this higher rigidity is never-
theless exactly what most chemists would expect from a rigid ring
system like cyclobutane, since the distortion of any bond in cyclobu-
tane has a greater impact on the other bonds compared to butane.
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coordinates, are both true constants with respect to changes in

the remaining coordinate system. They have a physical mean-

ing that will be worked out now.

For reasons of simplicity we first assume a set of non-

redundant, linearly independent, internal coordinates. Since

we expand the energy into forces, we are interested in finding a

point Q on the PES that corresponds to a specific gradient Gq.

Bearing in mind that there are no redundancies present, the

linear set of eqn (14) can easily be solved by multiplying from

the left by the inverse Hessian Hq
�1

Q = Hq
�1Gq (18)

Since every possible gradient Gq can be regarded as a linear

combination of canonical unit gradients

Gq ¼
G1

G2

..

.

0
B@

1
CA ð19Þ

¼ G1

1
0

..

.

0
@

1
Aþ G2

0
1
..
.

0
@

1
Aþ � � � ð20Þ

it can easily be seen from eqn (18) that the first column ofHq
�1

contains the displacements in Q due to a unit force applied on

the first coordinate. That means that a unit force G1 = 1 is

applied on the first coordinate while all other forces Gia1

thereby induced are allowed to relax. For this specific gradient

the displacement Q is simply the first column of C, but the

same interpretation holds true for all other columns of Hq
�1,

respectively. That means the diagonal elements of the com-

pliance matrix C = Hq
�1 contain the information about the

displacement of the corresponding coordinate, if a unit force is

applied to it, while—and this is the important point—all other

forces are allowed to relax. The displacements of all other

coordinates are not zero, but they are uniquely defined in the

first row of C, which are the compliance coupling constants.

If more than one force is applied, it becomes clear from

simple matrix algebra that the overall displacement Q is given

by adding the columns of C multiplied with the corresponding

forces Gi.

A simple example

To further illustrate that point, let us again consider the

function f(x,y) = x2 + y2 + xy which is plotted in Fig. 5.

If we are looking for the point at which the gradient is 1 with

respect to x and 0 with respect to y, we have to solve eqn (18)

for this function

x
y

� �
¼ H�1

1
0

� �
ð21Þ

x
y

� �
¼

2
3 �1

3

�1
3

2
3

� �
1
0

� �
¼

2
3

�1
3

� �
ð22Þ

Fig. 4 Force constants for the carbon–carbon bonds in cyclobutane and n-butane for two different sets of non-redundant internal coordinates.

All values are given in N cm�1.z

z Traditionally force constants are given in the non-SI unit mdyne Å�1

which is equivalent to N cm�1. Therefore the commonly used unit for
compliance constants is Å mdyne�1, which is equivalent to cm N�1.
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The displacement in x and y is given by the first column of

H�1, where the diagonal element refers to the distortion in x

and the off-diagonal term corresponds to the displacement in

y. Compliance constants thus represent a relaxed distortion of

a molecule and are therefore closely related to the minimum

energy path (MEP).33 The red line in Fig. 5 depicts this. The

black line, by contrast, represents the pathway if a force is

introduced on x while y remains unchanged, as required by

rigid force constants.

Redundant internal coordinates

Now one might ask whether eqn (14) can be solved in

redundant coordinates, too. Obviously the potential energy

of a molecule can be expressed in non-redundant as well as in

redundant internal coordinates, and the energy has to be

independent of it. Thus one can express the potential energy

in terms of compliance matrices C and C, respectively, with C

= Hq
+ being the Moore–Penrose inverse,22 because Hq is

singular:

1
2Q

THqQ = 1
2Q

THqQ (23)

QTHqCHqQ = QTHqCHqQ (24)

Using eqns (10) and (7) it follows that

QTHqACA
THqQ = QTHqCHqQ (25)

From this one can infer that

C = ACAT (26)

Unlike the relation between non-redundant and redundant

Hessian matrices (cf. eqn (10)), the redundant compliance

matrix C is now a linear combination of the non-redundant

one. Decius stated13 that in contrast to the Hessian this matrix

C is uniquely defined. This statement needs to be handled with

care. In general it is not true, since Hq is not uniquely defined

(cf. eqn (11)). Briefly, Decius however is right if u = E (cf.

eqn (12)). Bearing this assumption in mind, we can now solve

eqn (14) for the redundant set

Q = CGq (27)

This solution is not unique, but it is the best solution in a least-

squares sense.34

Eqn (27) states that the displacement of redundant coordi-

nates due to forces applied is given in a similar manner as in

the non-redundant case in eqn (18). That this interpretation

holds true in the redundant case is somewhat astounding, but

can clearly be seen from the shape of the redundant

compliance matrix

C = ACAT (26)

¼ E
R

� �
CðE RT Þ ð28Þ

¼ C CRT

RC RCRT

� �
ð29Þ

As Jones and Ryan17 have shown, in contrast to the Hessian,

C is a submatrix of C if the transformation matrix A is defined

according to eqn (8). Nevertheless, they made the same

assumption as Decius concerning the uniqueness of this

matrix.

It is immediately clear that a force applied to a coordinate of

the non-redundant subset causes a displacement in the non-

redundant coordinates as given by eqn (18). Furthermore the

coordinates of the redundant subset are distorted according to

eqn (7). Thus the corresponding column of the redundant

compliance matrix is given by the same transformation (cf.

eqn (29)) and additionally expresses the distortion of the

redundant coordinates. The interpretation of compliance con-

stants in redundant sets is therefore exactly the same as in the

non-redundant case.

During the whole derivation we have been assuming that we

know the matrix A, that means we have a redundant set of

coordinates and a corresponding subset of non-redundant

coordinates. This is of course often difficult to accomplish,

since the generation of non-redundant sets is a cumbersome

task and prone to error. However, the interpretation of

redundant compliance constants is straightforward, and there

is no need to generate a non-redundant subset, since eqn (27)

holds true for any compliance matrix C that has been trans-

formed from a non-redundant set via the matrix A with u= E.

Because Hessian matrices are usually computed in terms of

Cartesian coordinates and have to be transformed to a set of

internal coordinates, this condition is automatically satisfied if

the well-known Wilson B-Matrix method35 is used. The proof

of this statement, an effective algorithm for the computation of

redundant compliance matrices from cartesian Hessians, and a

corresponding computer program will be presented in a

forthcoming paper.

Discussion

In this last section we would like to show the performance of

compliance constants as bond strength descriptors. Please note

that in this case a lower value corresponds to a stronger bond.

Fig. 5 Plot of the two-dimensional function f(x,y) = x2 + y2 + xy

(with a coupling term). Point 1 (P1) reflects the global minimum, point

2 (P2) a small displacement of the x-coordinate while y is held fixed.

Point 3 (P3) depicts the situation after relaxation with respect to y. The

red line represents the minimum energy path (MEP).
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First we return to our cyclobutane/n-butane example. Look-

ing at Fig. 6, the following features of compliance constants as

bond strength descriptors are striking. (1) All four C–C bonds

in cyclobutane are described as being equal. This holds true for

both coordinate systems. (2) The strength of corresponding

bonds does not depend on the coordinate system in either

molecule. (3) The coupling between coordinates is lower by

two orders of magnitude than the diagonal terms throughout.

(4) Most importantly, in accordance with the bonding situa-

tion in strained ring systems (vide supra), by using compliance

constants the C–C bond strength in cyclobutane (0.255 cm

N�1) is described as being weaker than the C–C bonds in

n-butane (0.230 cm N�1, 0.233 cm N�1).

All advantages of compliance constants also apply, of

course, to non-covalent interactions. Nevertheless, the concept

of using compliance constants as descriptors for weak chemi-

cal interactions has been criticized by Pulay and Baker.2,8 In

the final section of one of their papers2 they state: ‘‘. . .we

conclude that compliance constants (or relaxed force constants)

measure the total interaction between fragments, but not indivi-

dual bonding interactions, and are therefore not useful diagnos-

tics of the strength of weak interatomic interactions.’’ This

statement is primarily based on the fact that there are often

non-zero diagonal compliance constants for pairs of atoms

that are many Ångstroms apart. As we have shown in this

tutorial review, because compliance constants describe the

elasticity, a force between any two atoms A and B in a

polyatomic system can, of course, lead to a relatively small

displacement (high relaxed force constant) even if these two

atoms are many Ångstroms apart. However, this is a true

physical phenomenon, since the compliance constants reflect

that the work has to be done against the sum of many through-

bond and through-space interactions. Simply put, the work

has to be done against the potential of all other atoms around

A and B, which is also true if A and B are not bonded in a

Lewis sense. One should of course not regard a low compli-

ance constant between atoms that are several Ångstroms apart

as a chemical bond. Nevertheless, a high value of a compliance

constant can sufficiently justify that a chemical bond (covalent,

hydrogen bond, etc.) is weak, and therefore compliance con-

stants are indeed useful for the description of the bonding

situation between weakly bound fragments.

Fig. 7 summarizes our recent results on differences in

individual hydrogen bond strengths in AT and GC base pairs

(left column). Using compliance constants we have shown e.g.

that the central interresidue N–H� � �N hydrogen bond between

guanine and cytosine is by far the strongest hydrogen bond in

both Watson–Crick base pairs.7 Returning to the critique by

Pulay and Baker concerning the utility of compliance con-

stants as non-covalent bond strength descriptors: how should

one construe the large C–H� � �O compliance value (23.13 cm

N�1) for AT in comparison with the considerably lower

N–H� � �N or N–H� � �O values? This large compliance constant

of course reflects the weaker C–H� � �O hydrogen bond, that

means a strictly local property and not a somehow delocalised

‘‘total interaction between fragments.’’

Furthermore we were able for example to clearly discrimi-

nate between C–H� � �F hydrogen bonds and anion� � �p

Fig. 6 Compliance constants for the carbon–carbon bonds in cyclobutane and n-butane for two different sets of non-redundant internal

coordinates. All values are given in cm N�1.z
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interactions at work during the recognition of anions by

resorcinarene receptors (right column).36 To the best of our

knowledge this is the first direct quantification of this type of

weak, non-covalent C–H� � �anion interaction.

Summary

Rigid force constants answer the question of which force has

to be applied against a specific internal coordinate in order to

achieve a given displacement (unit N cm�1), with the restric-

tion that all other coordinates remain unchanged. Compliance

constants, on the other hand, address the question of which

displacement is caused by a given force on a single coordinate

(unit cm N�1), while all other forces thereby introduced are

allowed to relax. The displacements of all other coordinates

caused by these forces are given by the compliance coupling

constants, which are the off-diagonal terms of the compliance

matrix. If—as it is frequently done in force field studies—rigid

force constants are employed for the description of individual

bond strength, the bonding situation is always described as

being too strong since the values of rigid force constants are

necessarily higher than the values of the corresponding relaxed

force constants. Relaxed force constants (the reciprocal of

individual compliance constants) measure the force required

to distort a coordinate by a unit amount while allowing all

other coordinates to relax. The use of individual inverted

compliance constants as relaxed force constants in cases where

stretching terms of empirical force fields are missing might

therefore lead to more reliable results in e.g. molecular dy-

namics simulations.

In sum, due to their properties, the diagonal terms of the

compliance matrix describe a more local property of a chemi-

cal bond than rigid force constants do. It is likely that

compliance constants are therefore much more transferable

than rigid force constants, since they do not depend on the

choice of the coordinates. Their transferability as e.g. force

field parameters is however limited to similar chemical envir-

onments and should of course not be overstrained. Never-

theless, the values of compliance constants are unique for any

molecule, which means that their comparability is indeed

unlimited. This property makes them useful for answering

questions related to the stiffness or compliance of covalent and

non-covalent chemical bonds. Since the concept is indepen-

dent of the method used for the description of a molecule

provided the matrix of energy second derivatives is available, it

is thus generally applicable to any quantum chemical or

empirical description of any chemical system.
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